pub struct EnumOptions(/* private fields */);parse only.Expand description
Set of valid string options
Methods from Deref<Target = HashSet<String>>§
1.0.0pub fn capacity(&self) -> usize
pub fn capacity(&self) -> usize
Returns the number of elements the set can hold without reallocating.
§Examples
use std::collections::HashSet;
let set: HashSet<i32> = HashSet::with_capacity(100);
assert!(set.capacity() >= 100);1.0.0pub fn iter(&self) -> Iter<'_, T>
pub fn iter(&self) -> Iter<'_, T>
An iterator visiting all elements in arbitrary order.
The iterator element type is &'a T.
§Examples
use std::collections::HashSet;
let mut set = HashSet::new();
set.insert("a");
set.insert("b");
// Will print in an arbitrary order.
for x in set.iter() {
println!("{x}");
}§Performance
In the current implementation, iterating over set takes O(capacity) time instead of O(len) because it internally visits empty buckets too.
1.0.0pub fn len(&self) -> usize
pub fn len(&self) -> usize
Returns the number of elements in the set.
§Examples
use std::collections::HashSet;
let mut v = HashSet::new();
assert_eq!(v.len(), 0);
v.insert(1);
assert_eq!(v.len(), 1);1.0.0pub fn is_empty(&self) -> bool
pub fn is_empty(&self) -> bool
Returns true if the set contains no elements.
§Examples
use std::collections::HashSet;
let mut v = HashSet::new();
assert!(v.is_empty());
v.insert(1);
assert!(!v.is_empty());1.9.0pub fn hasher(&self) -> &S
pub fn hasher(&self) -> &S
Returns a reference to the set’s BuildHasher.
§Examples
use std::collections::HashSet;
use std::hash::RandomState;
let hasher = RandomState::new();
let set: HashSet<i32> = HashSet::with_hasher(hasher);
let hasher: &RandomState = set.hasher();1.0.0pub fn difference<'a>(
&'a self,
other: &'a HashSet<T, S>,
) -> Difference<'a, T, S>
pub fn difference<'a>( &'a self, other: &'a HashSet<T, S>, ) -> Difference<'a, T, S>
Visits the values representing the difference,
i.e., the values that are in self but not in other.
§Examples
use std::collections::HashSet;
let a = HashSet::from([1, 2, 3]);
let b = HashSet::from([4, 2, 3, 4]);
// Can be seen as `a - b`.
for x in a.difference(&b) {
println!("{x}"); // Print 1
}
let diff: HashSet<_> = a.difference(&b).collect();
assert_eq!(diff, [1].iter().collect());
// Note that difference is not symmetric,
// and `b - a` means something else:
let diff: HashSet<_> = b.difference(&a).collect();
assert_eq!(diff, [4].iter().collect());1.0.0pub fn symmetric_difference<'a>(
&'a self,
other: &'a HashSet<T, S>,
) -> SymmetricDifference<'a, T, S>
pub fn symmetric_difference<'a>( &'a self, other: &'a HashSet<T, S>, ) -> SymmetricDifference<'a, T, S>
Visits the values representing the symmetric difference,
i.e., the values that are in self or in other but not in both.
§Examples
use std::collections::HashSet;
let a = HashSet::from([1, 2, 3]);
let b = HashSet::from([4, 2, 3, 4]);
// Print 1, 4 in arbitrary order.
for x in a.symmetric_difference(&b) {
println!("{x}");
}
let diff1: HashSet<_> = a.symmetric_difference(&b).collect();
let diff2: HashSet<_> = b.symmetric_difference(&a).collect();
assert_eq!(diff1, diff2);
assert_eq!(diff1, [1, 4].iter().collect());1.0.0pub fn intersection<'a>(
&'a self,
other: &'a HashSet<T, S>,
) -> Intersection<'a, T, S>
pub fn intersection<'a>( &'a self, other: &'a HashSet<T, S>, ) -> Intersection<'a, T, S>
Visits the values representing the intersection,
i.e., the values that are both in self and other.
When an equal element is present in self and other
then the resulting Intersection may yield references to
one or the other. This can be relevant if T contains fields which
are not compared by its Eq implementation, and may hold different
value between the two equal copies of T in the two sets.
§Examples
use std::collections::HashSet;
let a = HashSet::from([1, 2, 3]);
let b = HashSet::from([4, 2, 3, 4]);
// Print 2, 3 in arbitrary order.
for x in a.intersection(&b) {
println!("{x}");
}
let intersection: HashSet<_> = a.intersection(&b).collect();
assert_eq!(intersection, [2, 3].iter().collect());1.0.0pub fn union<'a>(&'a self, other: &'a HashSet<T, S>) -> Union<'a, T, S>
pub fn union<'a>(&'a self, other: &'a HashSet<T, S>) -> Union<'a, T, S>
Visits the values representing the union,
i.e., all the values in self or other, without duplicates.
§Examples
use std::collections::HashSet;
let a = HashSet::from([1, 2, 3]);
let b = HashSet::from([4, 2, 3, 4]);
// Print 1, 2, 3, 4 in arbitrary order.
for x in a.union(&b) {
println!("{x}");
}
let union: HashSet<_> = a.union(&b).collect();
assert_eq!(union, [1, 2, 3, 4].iter().collect());1.0.0pub fn contains<Q>(&self, value: &Q) -> bool
pub fn contains<Q>(&self, value: &Q) -> bool
Returns true if the set contains a value.
The value may be any borrowed form of the set’s value type, but
Hash and Eq on the borrowed form must match those for
the value type.
§Examples
use std::collections::HashSet;
let set = HashSet::from([1, 2, 3]);
assert_eq!(set.contains(&1), true);
assert_eq!(set.contains(&4), false);1.9.0pub fn get<Q>(&self, value: &Q) -> Option<&T>
pub fn get<Q>(&self, value: &Q) -> Option<&T>
Returns a reference to the value in the set, if any, that is equal to the given value.
The value may be any borrowed form of the set’s value type, but
Hash and Eq on the borrowed form must match those for
the value type.
§Examples
use std::collections::HashSet;
let set = HashSet::from([1, 2, 3]);
assert_eq!(set.get(&2), Some(&2));
assert_eq!(set.get(&4), None);1.0.0pub fn is_disjoint(&self, other: &HashSet<T, S>) -> bool
pub fn is_disjoint(&self, other: &HashSet<T, S>) -> bool
Returns true if self has no elements in common with other.
This is equivalent to checking for an empty intersection.
§Examples
use std::collections::HashSet;
let a = HashSet::from([1, 2, 3]);
let mut b = HashSet::new();
assert_eq!(a.is_disjoint(&b), true);
b.insert(4);
assert_eq!(a.is_disjoint(&b), true);
b.insert(1);
assert_eq!(a.is_disjoint(&b), false);1.0.0pub fn is_subset(&self, other: &HashSet<T, S>) -> bool
pub fn is_subset(&self, other: &HashSet<T, S>) -> bool
Returns true if the set is a subset of another,
i.e., other contains at least all the values in self.
§Examples
use std::collections::HashSet;
let sup = HashSet::from([1, 2, 3]);
let mut set = HashSet::new();
assert_eq!(set.is_subset(&sup), true);
set.insert(2);
assert_eq!(set.is_subset(&sup), true);
set.insert(4);
assert_eq!(set.is_subset(&sup), false);1.0.0pub fn is_superset(&self, other: &HashSet<T, S>) -> bool
pub fn is_superset(&self, other: &HashSet<T, S>) -> bool
Returns true if the set is a superset of another,
i.e., self contains at least all the values in other.
§Examples
use std::collections::HashSet;
let sub = HashSet::from([1, 2]);
let mut set = HashSet::new();
assert_eq!(set.is_superset(&sub), false);
set.insert(0);
set.insert(1);
assert_eq!(set.is_superset(&sub), false);
set.insert(2);
assert_eq!(set.is_superset(&sub), true);Trait Implementations§
Source§impl Clone for EnumOptions
impl Clone for EnumOptions
Source§fn clone(&self) -> EnumOptions
fn clone(&self) -> EnumOptions
1.0.0§fn clone_from(&mut self, source: &Self)
fn clone_from(&mut self, source: &Self)
source. Read moreSource§impl Debug for EnumOptions
impl Debug for EnumOptions
Source§impl Deref for EnumOptions
impl Deref for EnumOptions
Source§impl From<EnumOptions> for EnumOptions
impl From<EnumOptions> for EnumOptions
Source§fn from(value: EnumOptions) -> Self
fn from(value: EnumOptions) -> Self
Source§impl PartialEq for EnumOptions
impl PartialEq for EnumOptions
impl StructuralPartialEq for EnumOptions
Auto Trait Implementations§
impl Freeze for EnumOptions
impl RefUnwindSafe for EnumOptions
impl Send for EnumOptions
impl Sync for EnumOptions
impl Unpin for EnumOptions
impl UnwindSafe for EnumOptions
Blanket Implementations§
§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
§impl<T> CloneToUninit for Twhere
T: Clone,
impl<T> CloneToUninit for Twhere
T: Clone,
§unsafe fn clone_to_uninit(&self, dest: *mut u8)
unsafe fn clone_to_uninit(&self, dest: *mut u8)
clone_to_uninit)